The zone-center phonon spectra of phase-I ammonia and deuterated ammonia have been obtained from plane-wave DFT molecular dynamics and localized basis set harmonic lattice dynamics simulations. These data have proved to be excellent for benchmarking the two approaches. Significant changes to the assignments of the experimental low-frequency lattice modes are proposed on the basis of the calculated data.
View Article and Find Full Text PDFWe present a methodology for extracting phonon data from ab initio Born-Oppenheimer molecular dynamics calculations of molecular crystals. Conventional ab initio phonon methods based on perturbations are difficult to apply to lattice modes because the perturbation energy is dominated by intramolecular modes. We use constrained molecular dynamics to eliminate the effect of bond bends and stretches and then show how trajectories can be used to isolate and define in particular, the eigenvalues and eigenvectors of modes irrespective of their symmetry or wave vector.
View Article and Find Full Text PDFThe dynamics of the intermolecular short hydrogen bond in the molecular complex of urea and phosphoric acid are investigated using plane-wave density functional theory. Results indicate migration of the proton toward the center of the hydrogen bond as temperature is increased, in line with recent experimental measurements. Computed vibrational frequencies show favorable agreement with experimental measurement.
View Article and Find Full Text PDFPlane-wave density functional theory has been applied to determine the strengths of hydrogen bonds in the phase I crystal structures of ammonia and urea. For ammonia, each component of the trifurcated hydrogen bond has been found to be almost as strong as a standard N-H.N interaction, and for urea the strengths of the two different N-H.
View Article and Find Full Text PDF