Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals.
View Article and Find Full Text PDFBackground: It is well-established that specific herbal plants contain natural active ingredients that have demonstrated anti-cancer potential. Therefore, they are considered highly beneficial as a potential adjuvant, alternative or complementary agent in anti-cancer therapy. However, the low chemical stability and limited bioavailability of 3, 3'-Diindolylmethane (DIM), a plant-derived compound used in clinical settings, limit its therapeutic applications.
View Article and Find Full Text PDFThese days carbon dots have been developed for multiple biomedical applications. In the current study, the transfection potential of synthesized carbon dots from single biopolymers such as chitosan, PEI-2kDa, and PEI-25kDa (S-CDs, PEI2-CDs, and PEI25-CDs) and by combining two biopolymers (CP2-CDs and CP25-CDs) through a bottom-up approach have been investigated. The characterization studies revealed successful synthesis of fluorescent, positively charged carbon dots <20 nm in size.
View Article and Find Full Text PDFTilapia Lake Virus (TiLV) is a disease that affects tilapia fish, causing a high rate of sudden death at any stage in their life cycle. Unfortunately, there are currently no effective antiviral drugs or vaccines to prevent or control the progression of this disease. Researchers have discovered that the CRM1 protein plays a critical function in the development and spreading of animal viruses.
View Article and Find Full Text PDF