Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C.
View Article and Find Full Text PDFFood chain contamination by soil lead (Pb), beginning with Pb uptake by leafy vegetables, is a threat to food safety and poses a potential risk to human health. This study highlights the importance of two ecologically different earthworm species (the anecic species and the epigeic species ) as the driving force of microbial hotspots to enhance Pb accumulation in the leafy vegetable at different Pb contamination levels (0, 100, 500, and 1,000 mg·kg). The fingerprints of phospholipid fatty acids (PLFAs) were employed to reveal the microbial mechanism of Pb accumulation involving earthworm-plant interaction, as PLFAs provide a general profile of soil microbial biomass and community structure.
View Article and Find Full Text PDFDrinking water contamination has become a worldwide problem due to the highly negative effects that pollutants can have on human organisms and the environment. Hydroxyapatite (HAp) has the appropriate properties for the immobilization of various pollutants, being considered amongst the most cost-effective materials for water decontamination. The main objective of this study was to use synthesized hydroxyapatite for the elimination of Sr ions from contaminated solutions.
View Article and Find Full Text PDFSulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas.
View Article and Find Full Text PDFIn the context of climate change and biodiversity loss, rehabilitation of degraded urban soils is a means of limiting artificialization of terrestrial ecosystems and preventing further degradation of soils. Ecological rehabilitation approaches are available to reinitiate soil functions and enhance plant development. However, little is known about the long-term stability of rehabilitated soils in terms of soil functions when further natural or anthropogenic perturbations occur.
View Article and Find Full Text PDF