There has been growing interest in polymer/carbon nanotube (CNT) composites due to an exceptional enhancement in mechanical, structural, thermal, and electronic properties resulting from a small percentage of CNTs. However, the performance of these composites is influenced by the type of polymer used. PMMA is a polymer of particular interest among many other polymers because of its biomaterial applications due to its biocompatibility, non-toxicity, and non-biodegradability.
View Article and Find Full Text PDFCabbage, cauliflower and broccoli are well-known vegetables from the family having functional effects on human health. This study was carried out to identify different antioxidant properties and to quantify phenolic compounds by HPLC-DAD in different extracts (methanol, ethanol and water: acetic acid: acetone) of these vegetables. The results showed that, the methanolic dry extract of cabbage possessed the highest antioxidant activity (549 ± 7.
View Article and Find Full Text PDFIn this article, Molecular Dynamics (MD) simulation is used to investigate the tensile mechanical properties of functional graded Ni-Al (NiAl) alloy with Ni coating. The grading profile, temperature, crystallographic direction, and concentration of vacancy defects have been varied and corresponding changes in the tensile properties are reported. In general, it has been revealed that functional grading may reduce the ultimate tensile strength (UTS) of this homogeneous alloy but increase Young's modulus (YM).
View Article and Find Full Text PDFSilicon doping is an effective way to modulate the bandgap of graphene that might open the door for graphene to the semiconductor industries. However, the mechanical properties of silicon doped graphene (SiG) also plays an important role to realize its full potential application in the electronics industry. Electronic and optical properties of silicon doped graphene are well studied, but, our understanding of mechanical and fracture properties of the doped structure is still in its infancy.
View Article and Find Full Text PDFGermanene, a two-dimensional buckled hexagonal structure of germanium atoms, has attractive mechanical, optical, thermal and electronic features. Recently it has been reported that covalent bonding between two monolayer germanene sheets leads to the integration of intrinsic magnetism and band gap opening that makes it attractive to future nanoelectronics. In order to use the captivating features of this structure, its mechanical characterization needs to be studied.
View Article and Find Full Text PDF