Publications by authors named "M Mostovoy"

Randomly distributed topological defects created during the spontaneous symmetry breaking are the fingerprints to trace the evolution of symmetry, range of interaction, and order parameters in condensed matter systems. However, the effective mean to manipulate topological defects into ordered form is elusive due to the topological protection. Here, we establish a strategy to effectively align the topological domain networks in hexagonal manganites through a mechanical approach.

View Article and Find Full Text PDF

Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes.

View Article and Find Full Text PDF

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric CuOSeO.

View Article and Find Full Text PDF

The manipulation of magnetism through strain control is a captivating area of research with potential applications for low-power devices that do not require dissipative currents. Recent investigations of insulating multiferroics have unveiled tunable relationships among polar lattice distortions, Dzyaloshinskii-Moriya interactions (DMI), and cycloidal spin orders that break inversion symmetry. These findings have raised the possibility of utilizing strain or strain gradient to manipulate intricate magnetic states by changing polarization.

View Article and Find Full Text PDF

Electric control of magnetism and magnetic control of ferroelectricity can improve the energy efficiency of magnetic memory and data-processing devices. However, the necessary magnetoelectric switching is hard to achieve, and requires more than just a coupling between the spin and the charge degrees of freedom. Here we show that an application and subsequent removal of a magnetic field reverses the electric polarization of the multiferroic GdMnO, thus requiring two cycles to bring the system back to the original configuration.

View Article and Find Full Text PDF