Anthropogenic planetary heating is disrupting global alpine systems, but our ability to empirically measure and predict responses in alpine species distributions is impaired by a lack of comprehensive data and technical limitations. We conducted a comprehensive, semi-quantitative review of empirical studies on contemporary range shifts in alpine insects driven by climate heating, drawing attention to methodological issues and potential biotic and abiotic factors influencing variation in responses. We highlight case studies showing how range dynamics may affect standing genetic variation and adaptive potential, and discuss how data integration frameworks can improve forecasts.
View Article and Find Full Text PDFThe Australian brushtail possum (Trichosurus vulpecula) is adapted to a wide range of food plants across its range and is exposed to numerous physiological challenges. Populations that are resistant to the plant toxin sodium fluoroacetate are of particular interest as this compound has been used since the 1940s for vertebrate pest management around the world. Candidate gene identification is an important first step in understanding how spatial populations have responded to local selection resulting in local physiological divergence.
View Article and Find Full Text PDFThe Anostostomatidae of Aotearoa New Zealand are well-characterized at the genus and species level, but the higher-level systematics of the family as a whole remain poorly resolved. We tested the hypothesis that the New Zealand anaostostomatid fauna consists of a single monophyletic group consistent with a single common ancestor. For phylogenetic analysis, we sampled the genera in Aotearoa New Zealand as well as representatives of the family from Australia and New Caledonia.
View Article and Find Full Text PDF