This study presents a novel, eco-friendly method for removing methyldiethanolamine (MDEA) from wastewater, addressing its environmental impact and elevated chemical oxygen demand (COD) from gas refineries. We employed two wetland plants, Phragmites australis and Typha latifolia, utilizing a hydroponics approach to assess MDEA removal efficiency. Wastewater samples from the Ilam gas refinery in Iran were tested at varying initial concentrations (50 to 1600 ppm) over three consecutive 7-day periods, with a 1-day rest interval.
View Article and Find Full Text PDFThe COVID-19 pandemic has generated increased interest in potential transmission routes. In food retail settings, transmission from infected customers and workers and customers through surfaces has been deemed plausible. However, limited information exists on the presence and survival of SARS-CoV-2 on surfaces, particularly outside laboratory settings.
View Article and Find Full Text PDFIn this study, azide and alkyne moieties were introduced to the structure of citric acid-modified hydroxyethyl cellulose (HEC) and then through a bioorthogonal click chemistry method: Strain-promoted azide-alkyne cycloaddition, a novel crosslinked HEC scaffold (click sample) was obtained. Chemical modifications and successful crosslinking of the samples were assessed with FTIR and H NMR spectroscopy. Lyophilized samples exhibited a porous interconnected microarchitecture with desirable features for commensurate cartilage tissue engineering applications.
View Article and Find Full Text PDFIn this research, a novel γ-MnO/chitosan/FeO nanocomposite was synthesized and modified by ethylenediaminetetraacetic acid (EDTA) for the separation and simultaneous elimination of Zn(II) and Pb(II) ions from aqueous solutions in a batch system. The magnetic nanocomposite was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and elemental analysis (EDAX). The results demonstrated that the magnetic nanocomposite was successfully synthesized and cross-linked.
View Article and Find Full Text PDFNanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy.
View Article and Find Full Text PDF