Publications by authors named "M Moosburger"

Tumor and healthy tissue samples were irradiated by 24 MeV protons. The samples were exposed to doses from 0 to 50 Gy and subsequently examined by Raman spectroscopy. The analysis of the intensity of characteristic peaks as a function of radiation dose exhibits different trends for the two types of tissue.

View Article and Find Full Text PDF

Purpose: Since the number of cancer patients treated by proton irradiation has increased in the last few years, it seems appropriate to study dose-dependent effects of proton irradiation on mammalian tissues in more detail.

Materials And Methods: Tissue samples of normal skin of mouse and swine, of a human tumour model xenograph, and of normal skin and a skin tumour (basal cell carcinoma) of a human patient of about 1 mm thickness were irradiated by 24 MeV protons (uniform delivered doses of 1, 7 and 50 Gy: skin of mouse and a human tumour model xenograph, and 0.5, 5 and 50 Gy: swine and human skin).

View Article and Find Full Text PDF

The purpose of this work is to show the feasibility of proton radiography in terms of radiation dose, imaging speed, image quality (density and spatial resolution), and image content under clinical conditions. Protons with 214 MeV energy can penetrate through most patients and were used for imaging. The measured residual range (or energy) of the protons behind the patient was subtracted from the range without an object in the beam path and used to create a projected image.

View Article and Find Full Text PDF

Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively.

View Article and Find Full Text PDF

Spin-transfer observables for p p-->Lambda Lambda have been measured using a transversely polarized frozen-spin target and a beam momentum of 1.637 GeV/c. Current models of the reaction near threshold are in good agreement with existing measurements performed with unpolarized particles in the initial state but produce conflicting predictions for the spin-transfer observables Dnn and Knn (the normal-to-normal depolarization and polarization transfer), which are measurable only with polarized target or beam.

View Article and Find Full Text PDF