Bioengineering (Basel)
January 2025
Being essential intermediates for the biosynthesis of heme, chlorophyll, and several other biologically critical compounds, porphyrins have wide practical applications. However, up till now, their bio-based production remains challenging. In this study, we identified potential metabolic factors limiting the biosynthesis of type-III stereoisomeric porphyrins in .
View Article and Find Full Text PDFUnlabelled: Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of from to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway.
View Article and Find Full Text PDFIn this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions.
View Article and Find Full Text PDFHerein, we report the development of a microbial bioprocess for high-level production of 5-aminolevulinic acid (5-ALA), a valuable non-proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e.
View Article and Find Full Text PDFAs petro-based production generates numerous environmental impacts and their associated technological concerns, bio-based production has been well recognized these days as a modern alternative to manufacture chemical products in a more renewable, environmentally friendly, and sustainable manner. Herein, we report the development of a microbial bioprocess for high-level and potentially economical production of 3-hydroxyvalerate (3-HV), a valuable special chemical with multiple applications in chemical, biopolymer, and pharmaceutical industries, from glycerol, which can be cheaply and renewably refined as a byproduct from biodiesel production. We used our recently derived 3-HV-producing Escherichia coli strains for bioreactor characterization under various culture conditions.
View Article and Find Full Text PDF