Publications by authors named "M Moest"

Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two species have evolved the same preferences for red patterns by exchanging genetic material through hybridization.

View Article and Find Full Text PDF

Reconstruction of species histories is a central aspect of evolutionary biology. Patterns of genetic variation within and among populations can be leveraged to elucidate evolutionary processes and demographic histories. However, interpreting genetic signatures and unraveling the contributing processes can be challenging, in particular for non-model organisms with complex reproductive modes and genome organization.

View Article and Find Full Text PDF

Although genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (N, and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.

View Article and Find Full Text PDF

Several methods based on the Sequential Markovian coalescence (SMC) have been developed that make use of genome sequence data to uncover population demographic history, which is of interest in its own right and is a key requirement to generate a null model for selection tests. While these methods can be applied to all possible kind of species, the underlying assumptions are sexual reproduction in each generation and non-overlapping generations. However, in many plants, invertebrates, fungi and other taxa, those assumptions are often violated due to different ecological and life history traits, such as self-fertilization or long term dormant structures (seed or egg-banking).

View Article and Find Full Text PDF