Arch Gynecol Obstet
September 2023
Purpose: Breast surgery is usually performed under general anesthesia. Tumescent local anesthesia (TLA) offers the possibility to anesthetize large areas with highly diluted local anesthetic.
Methods: In this paper, the implementation, and experiences with TLA in the field of breast surgery are discussed.
Ultra-high repetition rate (UHRR) mode-locked laser diodes (MLLD) have shown promising results for applications based on optical sampling such as asynchronous optical sampling (ASOPS), optical sampling by repetition-rate tuning (OSBERT), and optical ranging. Important metrics to consider are the repetition frequency (RF) and the RF linewidth. Here, we compare two monolithically integrated MLLDs.
View Article and Find Full Text PDFHigh-performance buried heterostructure (BH) C-band InAs/InP quantum dot (QD) and L-band InGaAsP/InP quantum well (QW) two-section passively mode-locked lasers (MLLs) are investigated. From the irregularity of the longitudinal mode spacing in the comb spectra, we confirm that under stable passive mode locking, both devices have strong group velocity dispersion (GVD) and corresponding GVD-induced pulse width broadening. After compensation with anomalous dispersion fibers (SMF-28), short pulse trains with sub-ps pulse widths are achieved for both devices.
View Article and Find Full Text PDFWe demonstrate a monolithically integrated photonic integrated circuit (PIC) for terahertz spectroscopy with wide spectral bandwidth. The PIC includes two widely tunable sampled grating DBR (SG DBR) lasers, semiconductor optical amplifiers (SOAs), and passive components to combine signals. The SG DBR lasers cover 22 nm and 24 nm tuning range, respectively, with 4 nm overlap in the C band.
View Article and Find Full Text PDFCombining semiconductor optical amplifiers (SOA) on direct-bandgap III-V substrates with low-loss silicon or silicon-nitride photonic integrated circuits (PIC) has been key to chip-scale external-cavity lasers (ECL) that offer wideband tunability along with small optical linewidths. However, fabrication of such devices still relies on technologically demanding monolithic integration of heterogeneous material systems or requires costly high-precision package-level assembly, often based on active alignment, to achieve low-loss coupling between the SOA and the external feedback circuits. In this paper, we demonstrate a novel class of hybrid ECL that overcome these limitations by exploiting 3D-printed photonic wire bonds as intra-cavity coupling elements.
View Article and Find Full Text PDF