Time-resolved photoelectron spectroscopy provides a versatile tool for investigating electron dynamics in gaseous, liquid, and solid samples on sub-femtosecond time scales. The extraction of information from spectrograms recorded with the attosecond streak camera remains a difficult challenge. Common algorithms are highly specialized and typically computationally heavy.
View Article and Find Full Text PDFPhotoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales.
View Article and Find Full Text PDFUltrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton.
View Article and Find Full Text PDFMycotic aneurysms are a rare complication of septic diseases. Frequently they are recognized only in an advanced stage, with resulting poor prognosis. This case report describes a perforated mycotic abdominal aortic aneurysm following appendectomy.
View Article and Find Full Text PDF