Purpose: In locations where the proton energy spectrum is broad, lineal energy spectrum-based proton biological effects models may be more accurate than dose-averaged linear energy transfer (LET) based models. However, the development of microdosimetric spectrum-based biological effects models is hampered by the extreme computational difficulty of calculating microdosimetric spectra. Given a precomputed library of lineal energy spectra for monoenergetic protons, a weighted summation can be performed which yields the lineal energy spectrum of an arbitrary polyenergetic beam.
View Article and Find Full Text PDF. The present work shows the first extensive validation of the(GSM). This mechanistic and probabilistic model is trained and tested over cell survival experiments conducted with two cell lines (H460 and H1437), three different types of radiation (protons, helium, and carbon ions), spanning a very broad LET range from1 keVμm-1up to more than300 keVμm-1.
View Article and Find Full Text PDFIn this paper, we present MONAS (MicrOdosimetry-based modelliNg for relative biological effectiveness (RBE) ASsessment) toolkit. MONAS is a TOPAS Monte Carlo extension, that combines simulations of microdosimetric distributions with radiobiological microdosimetry-based models for predicting cell survival curves and dose-dependent RBE.MONAS expands TOPAS microdosimetric extension, by including novel specific energy scorers to calculate the single- and multi-event specific energy microdosimetric distributions at different micrometer scales.
View Article and Find Full Text PDFIn the present paper we numerically investigate, using Monte Carlo simulation, the theoretical results predicted by the Generalized Stochastic Microdosimetric Model (GSM2), as shown in the published companion paper. Taking advantage of the particle irradiation data ensemble (PIDE) dataset, we calculated GSM2 biological parameters of human salivary gland (HSG) and V79 cell lines. Further, exploiting the TOPAS-microdosimetric extension, we simulated the microdosimetric spectra of different radiation fields of therapeutic interest generated by four different ions (protons, helium-4, carbon-12 and oxygen-16) each at three different residual ranges.
View Article and Find Full Text PDFProton-therapy exploits the advantageous depth-dose profile of protons to induce the highest damage to tumoral cells in the last millimetres of their range in sharp Bragg Peak. To cover the whole tumoral volume, beams of different energies are combined to create the Spread Out Bragg Peak (SOBP). In passive modulated beams, the energy spread is created with modulators in which the highest energy beam is degraded through different thicknesses of calibrated plastic materials.
View Article and Find Full Text PDF