High energy-conversion efficiency (ZT) of thermoelectric materials has been achieved in heavy metal chalcogenides, but the use of toxic Pb or Te is an obstacle for wide applications of thermoelectricity. Here, high ZT is demonstrated in toxic-element free Ba BO (B = Si and Ge) with inverse-perovskite structure. The negatively charged B ion contributes to hole transport with long carrier life time, and their highly dispersive bands with multiple valley degeneracy realize both high p-type electronic conductivity and high Seebeck coefficient, resulting in high power factor (PF).
View Article and Find Full Text PDFMaterials exhibiting unique electronic properties arising from a characteristic crystal structure have physical properties that are sensitive to structural dimensionality. This study involves the destabilization of Sn 5s lone-pair states of SnO films by decreasing their structural dimensionality in the out-of-plane direction. The inherent dispersive band structure of the SnO films remained unchanged between 80 and 11 nm.
View Article and Find Full Text PDFBased on the fundamental design concept of modulating the valence band maximum of oxides and subsequent predictions through computational approaches, several lone-pair -based p-type oxide semiconductors, such as Sn- or Bi-based complex oxides, have been developed. Thus far, the bandgap can be modified via tuning of the chemical composition, whereas the hole density cannot be intentionally controlled because of the poor chemical stability of Sn and/or the formation of oxygen vacancies. The inability to control hole density prohibits the design and realization of emergent electronic devices based on p- and n-type oxide semiconductors.
View Article and Find Full Text PDFWe report the synthesis and optoelectronic properties of high phase-purity (>94 mol %) bulk polycrystals of KCoO-type layered nitrides N ( = Sr, Ba; and = Ti, Zr, Hf), which are expected to exhibit unique electron transport properties originating from their natural two-dimensional (2D) electronic structure, but high-purity intrinsic samples have yet been reported. The bulks were synthesized using a solid-state reaction between NH and N precursors with NaN to achieve high N chemical potential during the reaction. The N bulks are n-type semiconductors with optical band gaps of 1.
View Article and Find Full Text PDF