Publications by authors named "M Mingay"

The eukaryotic green alga is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike.

View Article and Find Full Text PDF

Organisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules.

View Article and Find Full Text PDF

Cell-fate determination is influenced by interactions between master transcription factors (TFs) and cis-regulatory elements. Hepatocyte nuclear factor 4 alpha (HNF4A), a liver-enriched TF, acts as a master controller in specification of hepatic progenitor cells by regulating a network of TFs to control onset of hepatocyte cell fate. Using analysis of genome-wide histone modifications, DNA methylation, and hydroxymethylation in mouse hepatocytes, we show that HNF4A occupies active enhancers in hepatocytes and is essential for active histone and DNA signatures, especially acetylation of lysine 27 of histone 3 (H3K27ac) and 5-hydroxymethylcytosine (5hmC).

View Article and Find Full Text PDF

Prenatal alcohol exposure (PAE) can alter the development of neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and neurobehavioral deficits. Although the etiology of this reprogramming remains unknown, emerging evidence suggests DNA methylation as a potential mediator and biomarker for the effects of PAE due to its responsiveness to environmental cues and relative stability over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles of rat hypothalami and leukocytes at four time points during early development to assess the genome-wide impact of PAE on the epigenome and identify potential biomarkers of PAE.

View Article and Find Full Text PDF

The genomes of myeloid malignancies are characterized by epigenomic abnormalities. Heterozygous, inactivating ten-eleven translocation 2 (TET2) mutations and neomorphic isocitrate dehydrogenase (IDH) mutations are recurrent and mutually exclusive in acute myeloid leukaemia genomes. Ascorbic acid (vitamin C) has been shown to stimulate the catalytic activity of TET2 in vitro and thus we sought to explore its effect in a leukaemic model expressing IDH1.

View Article and Find Full Text PDF