Publications by authors named "M Mijail Martinez-Ramos"

Light competition is thought to drive successional shifts in species dominance in closed vegetations, but few studies have assessed this for species-rich and vertically structured tropical forests. We analyzed how light competition drives species replacement during succession, and how cross-species variation in light competition strategies is determined by underlying species traits. To do so, we used chronosequence approach in which we compared 14 Mexican tropical secondary rainforest stands that differ in age (8-32 year-old).

View Article and Find Full Text PDF

Analyzing market states of the S&P 500 components on a time horizon January 3, 2006 to August 10, 2023, we found the appearance of a new market state not previously seen and we shall discuss its possible implications as an isolated state or as a beginning of a new general market condition. We study this in terms of the Pearson correlation matrix and relative correlation with respect to the S&P 500 index. In both cases the anomaly shows strongly.

View Article and Find Full Text PDF

Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics.

View Article and Find Full Text PDF

The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g.

View Article and Find Full Text PDF

Succession is a fundamental concept in ecology because it indicates how species populations, communities, and ecosystems change over time on new substrate or after a disturbance. A mechanistic understanding of succession is needed to predict how ecosystems will respond to land-use change and to design effective ecosystem restoration strategies. Yet, despite a century of conceptual advances a comprehensive successional theory is lacking.

View Article and Find Full Text PDF