The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is a non-cellular three-dimensional structure present in all tissues that is essential for the intestinal maintenance, function and structure, as well as for providing physical support for tissue integrity and elasticity. ECM enables the regulation of various processes involved in tissue homeostasis, being vital for healing, growth, migration and cell differentiation. Structurally, ECM is composed of water, polysaccharides and proteins, such as collagen fibers and proteoglycans, which are specifically arranged for each tissue.
View Article and Find Full Text PDFSomatic mutations of hematopoietic cells in the peripheral blood of normal individuals refer to clonal hematopoiesis of indeterminate potential (CHIP), which is associated with a 0.5-1% risk of progression to hematological malignancies and cardiovascular diseases. CHIP has also been reported in Multiple Myeloma (MM) patients, but its biological relevance remains to be elucidated.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
This study evaluated the biocompatibility of dense and porous forms of Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), Poly(ε-caprolactone) (PCL), and their 75/25 blend for bone tissue engineering applications. The biomaterials were characterized morphologically using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the thickness and porosity of the scaffolds were determined. Functional assessments of mesenchymal stem cells (MSCs) included the MTT assay, alkaline phosphatase (ALP) production, and morphological and cytochemical analyses.
View Article and Find Full Text PDFJ Funct Biomater
October 2024
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation.
View Article and Find Full Text PDF