Publications by authors named "M Mieszczak"

Pre-mRNA processing in eukaryotic cells requires the participation of multiple protein factors and ribonucleoprotein particles. One class of proteins involved in this process are RNA-binding proteins, which contain a domain of ca. 90 amino acids with a characteristic ribonucleoprotein consensus sequence (RNP-CS).

View Article and Find Full Text PDF

nam3 and R705, yeast nuclear omnipotent suppressors of mitochondrial mit- mutations, reverse the superimposed spectrum of trans-recessive splicing defects by affecting the protein composition of the small mitoribosomal subunit. Analysis of the suppressor's interaction suggests that suppression results from mutations in the mitoribosomal polypeptides. These data indicate an obligatory connection between mitoribosome function and splicing of introns bI2, bI4 and aI1 in yeast mitochondria.

View Article and Find Full Text PDF

Protein composition of mitochondrial ribosomes of the yeast Saccharomyces cerevisiae was analysed by two-dimensional electrophoresis. The small (37S) mitoribosomal subunit contains 36 different polypeptides with molecular weights ranging from 10,000 to 60,000. The large (50S) subunit is composed of 41 proteins with molecular weights from 10,000 to 43,000.

View Article and Find Full Text PDF

Yeast informational suppressors of mit- mutations coded for by nuclear (nam3-1, nam3-2) or by mitochondrial DNA (mim3-1) affect the mitoribosome. Nuclear mutations result in the appearance of an additional polypeptide called SI in the small mitoribosomal subunit. An identical polypeptide, not detected in the wild type 37S subunit, is present in crude preparations of mitoribosomes isolated from a mim3-1 suppressor carrying strain.

View Article and Find Full Text PDF