Publications by authors named "M Mesina"

Background: When conventional trans-venous CS lead placement fails, trans-septal endocardial left ventricle lead placement is an alternative technique used to capture the left ventricle endocardially; however, its use is limited due to a lack of evidence, practice uptake, and clinical trials.

Methods: In this single-center cohort study, we evaluated the efficiency of the procedure, post-procedural complication rate, rate of thromboembolic events, overall survival rate, and changes in the echocardiographic parameters, brain natriuretic peptide (BNP) level, and New York Heart Association (NYHA) class, both before and after TSLV lead implantation.

Results: The TSLV lead implant is safe and improves EF, LVEDV, LVESV, and LVIDd.

View Article and Find Full Text PDF

During antigen-driven responses, B cells can differentiate at extra-follicular (EF) sites or initiate germinal centers (GCs) in processes that involve interactions with T cells. Here, we examined the roles of interleukin (IL)-2 secreted by T helper (Th) cells during cognate interactions with activated B cells. IL-2 boosted the expansion of EF plasma cells and the secretion of low-mutated immunoglobulin G (IgG).

View Article and Find Full Text PDF

The efficacy of de novo cardiac resynchronisation therapy (CRT) in patients with heart failure (HF), left ventricular systolic dysfunction (LVSD), and a broad QRS morphology is well established. However, the optimal stage for upgrading patients with existing pacemakers (PPMs) or implantable cardioverter-defibrillators (ICDs) and HF with high-burden right ventricular (RV) pacing remains uncertain. Thus, this multicentre retrospective analysis compared patients with pre-existing PPMs or ICDs who underwent CRT upgrades to investigate the appropriate stage for CRT implantation in these patients and to assess the validity of treating both PPM and ICD recipients under the same recommendation level in the current guidelines.

View Article and Find Full Text PDF

Increasing the biocompatibility of some biological implants through tissue engineering is important for regenerative medicine, which recently has a rapid development dynamic. In this study we used tree different washing protocols, respectively with Sodium Lauryl Sulfate (SLS), with Sodium Deoxycholate (SD), and with saline (Sa) to achieve partial decellularization of 2-3mm thick cross-sections through Wistar rat hearts. Pieces of the heart tissue were either histologically analyzed to evaluate the decellularization processes or implanted for 5 days on 9-day-old chick embryo chorioallantoic membrane (CAM) and then histologically analyzed to evaluate CAM-implant interactions.

View Article and Find Full Text PDF

The extracellular matrix (ECM) scaffolds are considered a gold standard for the engineering of appropriate grafts used in regenerative medicine for tissue repair, and decellularization of myocardial tissue is one of the most studied processes for obtaining natural ECM to date. Decellularization methods, agents used, or treatment durations can be varied to optimize cardiac tissue decellularization parameters. In this work we performed a morphological and morphometric analysis of cardiac tissue subjected to decellularization protocols based on Sodium Deoxycholate (SD) or Sodium Lauryl Sulfate (SLS) to identify factors that allow optimization of single-detergent based protocols for cardiac ECM manufacturing.

View Article and Find Full Text PDF