Biologically mediated nanoparticle (NP) synthesis offers a reliable and sustainable alternative route for metal NP production. Compared with conventional chemical and physical production methods that require hazardous materials and considerable energy expenditure, some microorganisms can reduce metal ions into NPs during standard metabolic processes. However, to be considered a feasible commercial option, the properties and inherent activity of bio-NPs still need to be significantly improved.
View Article and Find Full Text PDFApproaches to DNA extraction play a crucial role in determining the variability of results obtained through 16S rRNA amplicon sequencing. Particularly, clay-rich samples can impede the efficiency of various standard cultivation-independent techniques. We conducted an inter-laboratory comparison study to thoroughly assess the efficacy of two published DNA extraction methods (kit-based and phenol-chloroform-based) specifically designed for bentonite samples.
View Article and Find Full Text PDFPolymeric hydrogels are among the most studied materials due to their exceptional properties for many applications. In addition to organic and inorganic-based hydrogels, "hybrid hydrogels" have been gaining significant relevance in recent years due to their enhanced mechanical properties and a broader range of functionalities while maintaining good biocompatibility. In this sense, the addition of micro- and nanoscale clay particles seems promising for improving the physical, chemical, and biological properties of hydrogels.
View Article and Find Full Text PDFA Gram-stain-negative bacterial strain designated Be4, belonging to the genus , was isolated from mining porewaters sampled in uranium mill tailings repository sites, located in Bellezane, near Bessines-sur-Gartempe (Limousin, France). Cells were facultative anaerobic, rod-shaped, non-endospore-forming and motile with flagella. The mean cell size was 1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2024
Microorganisms can play a key role in selenium (Se) bioremediation and the fabrication of Se-based nanomaterials by reducing toxic forms (Se(VI) and Se(IV)) into Se(0). In recent years, omics have become a useful tool in understanding the metabolic pathways involved in the reduction process. This paper aims to elucidate the specific molecular mechanisms involved in Se(VI) reduction by the bacterium Stenotrophomonas bentonitica.
View Article and Find Full Text PDF