Purpose: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2 window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney.
Procedures: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3 chromosome inherited from Brown Norway, SS.
Currently, there are no biomarkers to predict lethal lung injury by radiation. Since it is not ethical to irradiate humans, animal models must be used to identify biomarkers. Injury to the female WAG/RijCmcr rat has been well-characterized after exposure to eight doses of whole thorax irradiation: 0-, 5-, 10-, 11-, 12-, 13-, 14- and 15-Gy.
View Article and Find Full Text PDFPurpose: The goal of the current study was to identify longitudinal changes in urinary metabolites following IR exposure and to determine potential alleviation of radiation toxicities by administration of recombinant APC formulations.
Materials And Methods: Female adult WAG/RijCmcr rats were irradiated with 13.0 Gy leg-out partial body X-rays; longitudinally collected urine samples were subject to LC-MS based metabolomic profiling.
Purpose: To test IPW-5371 for the mitigation of the delayed effects of acute radiation exposure (DEARE). Survivors of acute radiation exposure are at risk for developing delayed multi-organ toxicities; however, there are no FDA-approved medical countermeasures (MCM) to mitigate DEARE.
Methods: WAG/RijCmcr female rat model of partial-body irradiation (PBI), by shielding part of one hind leg, was used to test IPW-5371 (7 and 20 mg kgd) for mitigation of lung and kidney DEARE when started 15 d after PBI.