Publications by authors named "M Meboldt"

Background: Debriefings are central to effective learning in simulation-based medical education. However, educators often face challenges when conducting debriefings, which are further compounded by the lack of empirically derived knowledge on optimal debriefing processes. The goal of this study was to explore the technical feasibility of audio-based speaker diarization for automatically, objectively, and reliably measuring debriefing interaction patterns among debriefers and participants.

View Article and Find Full Text PDF

Melanoma, the deadliest form of skin cancer, has seen a steady increase in incidence rates worldwide, posing a significant challenge to dermatologists. Early detection is crucial for improving patient survival rates. However, performing total body screening (TBS), i.

View Article and Find Full Text PDF

Purpose: Numerous navigation devices for percutaneous, CT-guided interventions exist and are, due to their advantages, increasingly integrated into the clinical workflow. However, effective training methods to ensure safe usage are still lacking. This study compares the potential of an augmented reality (AR) training application with conventional instructions for the Cube Navigation System (CNS), hypothesizing enhanced training with AR, leading to safer clinical usage.

View Article and Find Full Text PDF

Human skin equivalents (HSEs) serve as important tools for mechanistic studies with human skin cells, drug discovery, pre-clinical applications in the field of tissue engineering and for skin transplantation on skin defects. Besides the cellular and extracellular matrix (ECM) components used for HSEs, physical constraints applied on the scaffold during HSEs maturation influence tissue organization, functionality, and homogeneity. In this study, we introduce a 3D-printed culture insert that exposes bi-layered HSEs to a static radial constraint through matrix adhesion.

View Article and Find Full Text PDF

Background: Airway pressure is usually measured by sensors placed in the ventilator or on the ventilator side of the endotracheal tube (ETT), at the Y-piece. These remote measurements serve as a surrogate for the tracheal or alveolar pressure. Tracheal pressure can only be predicted correctly by using a model that incorporates the pressure at the remote location, the flow through the ETT, and the resistance of the ETT if the latter is a predictable function of Y-piece flow.

View Article and Find Full Text PDF