During cell invasion, large Extracellular Vesicle (lEV) release from host cells was dose-dependently triggered by Trypanosoma cruzi metacyclic trypomastigotes (Mtr). This lEV release was inhibited when IP-mediated Ca exit from the ER and further Ca entry from plasma membrane channels was blocked, but whilst any store-independent Ca entry (SICE) could continue unabated. That lEV release was equally inhibited if all entry from external sources was blocked by chelation of external Ca points to the major contributor to Mtr-triggered host cell lEV release being IP/store-mediated Ca release, SICE playing a minor role.
View Article and Find Full Text PDFPlasma membrane-derived vesicles (PMVs) are small intact vesicles released from the cell surface that play a role in intercellular communication. We have examined the role of PMVs in the terminal differentiation of monocytes. The myeloid-differentiating agents all-trans retinoic acid/PMA and histamine, the inflammatory mediator that inhibits promonocyte proliferation, induced an intracellular Ca(2+)-mediated PMV (as opposed to exosome) release from THP-1 promonocytes.
View Article and Find Full Text PDFWe challenge the concept of idiopathic parkinsonism (IP) as inevitably progressive neurodegeneration, proposing a natural history of sequential microbial insults with predisposing host response. Proof-of-principle that infection can contribute to IP was provided by case studies and a placebo-controlled efficacy study of Helicobacter eradication. "Malignant" IP appears converted to "benign", but marked deterioration accompanies failure.
View Article and Find Full Text PDFBackground: Weight gain is commonly observed during psychotropic treatments for chronic forms of severe mental illness and is most rapid during the early treatment phases. All formats of behavioural weight intervention programmes have suggested that weight gain can be prevented or reversed in some patients. There is no data on these programmes in acutely unwell inpatients whom may be the major beneficiaries.
View Article and Find Full Text PDFViral interference with secretory cargo is a common mechanism for pathogen immune evasion. Selective down regulation of critical immune system molecules such as major histocompatibility complex (MHC) proteins enables pathogens to mask themselves from their host. African swine fever virus (ASFV) disrupts the trans-Golgi network (TGN) by altering the localization of TGN46, an organelle marker for the distal secretory pathway.
View Article and Find Full Text PDF