The conjugation of small-molecule semiconductors with self-assembling peptides is a powerful tool for the fabrication of supramolecular soft materials for organic electronics and bioelectronics. Herein, we introduced the benchmark organic semiconductor [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) within the structure of a self-assembling amphipathic peptide. The molecular structure of the conjugate was rationally designed to favour π-π stacking between BTBT cores and π-delocalization within the self-assembled architectures.
View Article and Find Full Text PDFThe removal of dyes and pharmaceuticals from water has become a major issue in recent years due to the shortage of freshwater resources. The adsorption of these pollutants through nontoxic, easy-to-make, and environmentally friendly adsorbents has become a popular topic. In this work, a tetrapeptide-pyrene conjugate was rationally designed to form hydrogels under controlled acidic conditions.
View Article and Find Full Text PDFMetal-ligand interactions have emerged as an important tool to trigger and modulate self-assembly, and to tune the properties of the final supramolecular materials. Herein, we report the metal-cation induced self-assembly of a pyrene-peptide conjugate to form hydrogels. The peptide has been rationally designed to favor the formation of β-sheet 1D assemblies and metal coordination through the Glu side chains.
View Article and Find Full Text PDFLeading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity.
View Article and Find Full Text PDFThe peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes.
View Article and Find Full Text PDF