Publications by authors named "M Mayhaus"

Article Synopsis
  • An amendment to the original paper has been released.
  • You can find the amendment through a link provided at the top of the paper.
  • This update may contain important changes or additional information related to the original content.
View Article and Find Full Text PDF
Article Synopsis
  • Late-onset Alzheimer's disease (LOAD) is the most common type of dementia and is influenced by genetics.
  • Researchers studied a lot of people (94,437) to find specific genes that may increase the risk of developing LOAD, confirming 20 known ones and discovering 5 new ones.
  • They also found that certain genetic traits related to the immune system and how the brain processes proteins are linked to a higher risk of LOAD, suggesting there are more rare genes yet to be identified that could also play a role.
View Article and Find Full Text PDF

Common variants of about 20 genes contributing to AD risk have so far been identified through genome-wide association studies (GWAS). However, there is still a large proportion of heritability that might be explained by rare but functionally important variants. One of the so far identified genes with rare AD causing variants is ADAM10.

View Article and Find Full Text PDF

Objective: The aim of this study was to identify variants associated with familial late-onset Alzheimer disease (AD) using whole-genome sequencing.

Methods: Several families with an autosomal dominant inheritance pattern of AD were analyzed by whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in genes already known to be associated with AD and confirmed by Sanger sequencing using standard protocols.

View Article and Find Full Text PDF
Article Synopsis
  • * Our research uncovered three significant variants: a protective variant in the PLCG2 gene and risk variants in ABI3 and TREM2, known for their roles in Alzheimer's susceptibility.
  • * The findings emphasize the importance of microglia, immune cells in the brain, suggesting that their genetic variations may contribute directly to the progression of Alzheimer's disease.
View Article and Find Full Text PDF