Publications by authors named "M Mayford"

Background And Purpose: Learned associations between environmental stimuli and drugs of abuse represent a major factor in the chronically relapsing nature of drug addiction. In drug dependent subjects these associations must be presumed to include associations linked to reversal of adverse withdrawal states by drug use-"withdrawal-associated learning" (WDL). However, their significance in drug seeking has received little experimental scrutiny.

View Article and Find Full Text PDF

The neural circuits underlying memory change over prolonged periods after learning, in a process known as systems consolidation. Postlearning spontaneous reactivation of memory-related neural ensembles is thought to mediate this process, although a causal link has not been established. Here we test this hypothesis in mice by using optogenetics to selectively reactivate neural ensembles representing a contextual fear memory (sometimes referred to as engram neurons).

View Article and Find Full Text PDF

Fear discrimination is critical for survival, while fear generalization is effective for avoiding dangerous situations. Overgeneralized fear is a typical symptom of anxiety disorders, including generalized anxiety disorder and posttraumatic stress disorder (PTSD). Previous research demonstrated that fear discrimination learning is mediated by prefrontal mechanisms.

View Article and Find Full Text PDF

Astrocytes have prominent roles in central nervous system (CNS) function and disease, with subpopulations defined primarily by morphologies and molecular markers often determined in cell culture. Here, we identify an astrocyte subpopulation termed immediate-early astrocytes () that is defined by functional c-Fos activation during CNS disease development. An unbiased screen for CNS cells showing c-Fos activation during experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis (MS), was developed by using inducible, TetTag c-Fos reporter mice that label activated cells with a temporally stable, nuclear green fluorescent protein (GFP).

View Article and Find Full Text PDF

Conflicting evidence exists regarding the role of infralimbic cortex (IL) in the environmental control of appetitive behavior. Inhibition of IL, irrespective of its intrinsic neural activity, attenuates not only the ability of environmental cues predictive of reward availability to promote reward seeking, but also the ability of environmental cues predictive of reward omission to suppress this behavior. Here we report that such bidirectional behavioral modulation in rats is mediated by functionally distinct units of neurons (neural ensembles) that are concurrently localized within the same IL brain area but selectively reactive to different environmental cues.

View Article and Find Full Text PDF