Publications by authors named "M Matuszak"

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

This white paper examines the potential of pioneering technologies and artificial intelligence (AI)-driven solutions in advancing clinical trials involving radiotherapy. As the field of radiotherapy evolves, the integration of cutting-edge approaches such as radiopharmaceutical dosimetry, FLASH radiotherapy, image-guided radiation therapy (IGRT), and AI promises to improve treatment planning, patient care, and outcomes. Additionally, recent advancements in quantum science, linear energy transfer/relative biological effect (LET/RBE), and the combination of radiotherapy and immunotherapy create new avenues for innovation in clinical trials.

View Article and Find Full Text PDF

Purpose: NRG-RTOG0617 demonstrated a detrimental effect of uniform high-dose radiation in stage III non-small cell lung cancer. NRG-RTOG1106/ECOG-ACRIN6697 (ClinicalTrials.gov identifier: NCT01507428), a randomized phase II trial, studied whether midtreatment F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) can guide individualized/adaptive dose-intensified radiotherapy (RT) to improve and predict outcomes in patients with this disease.

View Article and Find Full Text PDF
Article Synopsis
  • This clinical trial aimed to improve treatment outcomes for patients with locally advanced non-small cell lung cancer (NSCLC) by using adaptive radiation therapy that tailors the treatment based on the patient's response, while minimizing side effects like lung and esophageal toxicity.
  • A total of 47 patients participated, receiving personalized radiation doses based on imaging techniques (FDG-PET and SPECT) to maximize the dose to the tumor while sparing healthy lung tissue.
  • Results showed manageable toxicity levels after one year, with 21.3% experiencing grade 2 pneumonitis and 66.0% grade 2 esophagitis, while striving for better local control and overall survival.
View Article and Find Full Text PDF

Background: Investigations on radiation-induced lung injury (RILI) have predominantly focused on local effects, primarily those associated with radiation damage to lung parenchyma. However, recent studies from our group and others have revealed that radiation-induced damage to branching serial structures such as airways and vessels may also have a substantial impact on post-radiotherapy (RT) lung function. Furthermore, recent results from multiple functional lung avoidance RT trials, although promising, have demonstrated only modest toxicity reduction, likely because they were primarily focused on dose avoidance to lung parenchyma.

View Article and Find Full Text PDF