DNA origami is a widely used method to construct nanostructures by self-assembling designed DNA strands. These structures are often used as "pegboards" for templated assembly of proteins, gold nanoparticles, aptamers, and other molecules, with applications ranging from therapeutics and diagnostics to plasmonics and photonics. Imaging these structures using atomic force microscopy (AFM) or transmission electron microscope (TEM) does not capture their full conformation ensemble as they only show their shape flattened on a surface.
View Article and Find Full Text PDFToehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and for a wide range of DNA or RNA-based reaction circuits. Investigation of TMSD kinetics typically relies on bulk fluorescence measurements providing effective, bulk-averaged reaction rates. Information on individual molecules or even base pairs is scarce.
View Article and Find Full Text PDFSophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles.
View Article and Find Full Text PDFRibonucleic acid (RNA) is an essential molecule in a wide range of biological functions. In 1990, McCaskill introduced a dynamic programming algorithm for computing the partition function of an RNA sequence. McCaskill's algorithm is widely used today for understanding the thermodynamic properties of RNA.
View Article and Find Full Text PDFThis chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.
View Article and Find Full Text PDF