Publications by authors named "M Mateescu"

Zero-valent copper and silver metals (Ms) nanoparticles (NPs) supported on carboxymethylcellulose (CMC) were synthesized for treating Enterotoxigenic fimbriae 4 (ETEC:F4), a major cause of diarrhea in post-weaned pigs. The antibacterial properties of Cu/CMC and Ag/CMC were assessed on infected porcine intestinal enterocyte IPEC-J2, an in vitro model mimicking the small intestine. The lower average particle size (218 nm) and polydispersity index [PDI]: 0.

View Article and Find Full Text PDF

Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers.

View Article and Find Full Text PDF

Mesalamine, also called 5-ASA (5-aminosalicylic acid), is a largely used anti-inflammatory agent and is a main choice to treat Ulcerative Colitis. This report is aimed to investigate enzymatic processes involved in the oxidation of mesalamine to better understand some of its side-effects. Oxidation with oxygen (catalyzed by ceruloplasmin) or with hydrogen peroxide (catalyzed by peroxidase or hemoglobin) showed that these oxidases, despite their different mechanisms of oxidation, could recognize mesalamine as a substrate and trigger its oxidation to a corresponding quinone-imine.

View Article and Find Full Text PDF

This study proposes the application of carboxymethyl starch derivatives as tablet coatings affording gastro-protection. Carboxymethyl starch (CMS) films were obtained by casting of aqueous filmogenic starch solutions with or without plasticizers and their structural organization was followed using Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD). Together with data from mechanical tests (tensile strength, elongation, Young's modulus) the results were used to select filmogenic formulations adapted for coatings of tablets.

View Article and Find Full Text PDF

The deregulation of copper homoeostasis can promote various diseases such as Menkes disease or hypertrophic cardioencephalomyopathy. We have recently synthesized solid copper(II) complexes ([Cu(His)Cl] and [Cu(Ser)]), stable in physiological media and with potential as therapeutic agents. This report describes: i) the biocompatibility of these complexes at concentrations up to 100 μM using a differentiated Caco-2 cells model; ii) their transport across the intestinal epithelium using a transepithelial resistance assay and monitoring the amount of copper complexes at the apical and basolateral sides of the cells.

View Article and Find Full Text PDF