Publications by authors named "M Masuda-Herrera"

Skin sensitization is a critical end point in occupational toxicology that necessitates the use of fast, accurate, and affordable models to aid in establishing handling guidance for worker protection. While many in silico models have been developed, the scarcity of reliable data for active pharmaceutical ingredients (APIs) and their intermediates (together regarded as pharmaceutical compounds) brings into question the reliability of these tools, which are largely constructed using publicly available nonspecialty chemicals. Here, we present the quantum-mechanical (QM) Computer-Aided Discovery and REdesign (CADRE) model, which was developed with the bioactive and structurally complex chemical space in mind by relying on the fundamentals of chemical interactions in key events (versus structural attributes of training-set data).

View Article and Find Full Text PDF

Leachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of models to screen extractables and leachables to assess their possible reactivity with biomolecules. These models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these approaches.

View Article and Find Full Text PDF

Health-based exposure limits (HBELs) are derived for leachables from polymeric components that interact with the drug substance which exceed a safety concern threshold (SCT). However, given the nature of leachables, there is not always chemical-specific toxicology data. Read-across methodology specific to extractables and leachables (E&Ls) was developed based on survey data collected from 11 pharmaceutical companies and methodology used in other industries.

View Article and Find Full Text PDF

Quality by design is the foundation of the risk management framework for extractables and leachables (E&Ls) recommended by the Extractables and Leachables Safety Information Exchange (ELSIE). Following these principles during the selection of materials for pharmaceutical product development minimizes the presence of highly toxic substances and decreases the health risk of potential leachables in the drug product. Therefore, in the context of the broad arena of chemicals, it is important to distinguish E&Ls as a subset of chemicals and evaluate this relevant chemical space to derive appropriate analytical and safety thresholds.

View Article and Find Full Text PDF

Low levels of N-nitrosamines (NAs) were detected in pharmaceuticals and, as a result, health authorities (HAs) have published acceptable intakes (AIs) in pharmaceuticals to limit potential carcinogenic risk. The rationales behind the AIs have not been provided to understand the process for selecting a TD or read-across analog. In this manuscript we evaluated the toxicity data for eleven common NAs in a comprehensive and transparent process consistent with ICH M7.

View Article and Find Full Text PDF