Carbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600 °C, 800 °C and 1000 °C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/FeO, surrounded by a well-defined graphite shell.
View Article and Find Full Text PDFClathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH and CO are the traditional guests found in natural systems, incorporating smaller molecules (e.g.
View Article and Find Full Text PDFAlthough traditionally high-surface area carbon materials have been considered as rigid structures with a disordered three dimensional (3D) network of graphite microdomains associated with a limited electrical conductivity (highly depending on the porous structure and surface chemistry), here we show that this is not the case for activated carbon materials prepared using harsh activation conditions (e.g., KOH activation).
View Article and Find Full Text PDFKOH activation of a mesophase pitch produces very efficient carbons for the removal of sulfide in aqueous solution, increasing the sulfur oxidation rate with the degree of activation of the carbon. These carbons are characterized by their graphitic structures, with domains of sizes of around 20 nm, and a moderate concentration of surface oxygen groups (0.2-0.
View Article and Find Full Text PDFThe molecular exchange of CH4 for CO2 in gas hydrates grown in confined nanospace has been evaluated for the first time using activated carbons as a host structure. The nano-confinement effects taking place inside the carbon cavities and the exceptional physicochemical properties of the carbon structure allows us to accelerate the formation and decomposition process of the gas hydrates from the conventional timescale of hours/days in artificial bulk systems to minutes in confined nanospace. The CH4 /CO2 exchange process is fully reversible with high efficiency at practical temperature and pressure conditions.
View Article and Find Full Text PDF