Publications by authors named "M Martinez-Carrion"

Hsc70 binds acid-unfolded mitochondrial aspartate aminotransferase (mAAT), forming either soluble or insoluble complexes depending on the relative concentrations of the proteins. Using partial proteolysis of Hsc70-mAAT complexes in combination with MALDI-TOF mass spectrometry, we have identified several potential Hsc70-binding regions in the mAAT polypeptide. Only one mAAT peptide was found bound to Hsc70 in the insoluble complexes while nine peptides arising from eight sequence regions of mAAT were found associated with Hsc70 in the soluble complexes.

View Article and Find Full Text PDF

The interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) with GroEL has been studied by electron paramagnetic resonance (EPR) and fluorescence spectroscopy. In the native protein, the spin probe was immobilized when attached to Cys166 at the domain interface, but was fully mobile when introduced at Cys(-19) in the N-terminal presequence peptide. Unfolding of the protein resulted in a highly mobile EPR spectrum for probes introduced at either site.

View Article and Find Full Text PDF

Dimeric mitochondrial aspartate aminotransferase (mAAT) contains a molecule of pyridoxal 5'-phosphate (PLP) tightly attached to each of its two identical active sites. The presence of this natural reporter allows us to study separately local perturbations in the architecture of this critical region of the molecule during unfolding. Upon unfolding of the enzyme with guanidine hydrochloride (GdnHCl), the coenzyme is completely released from the active site.

View Article and Find Full Text PDF

Rat liver mitochondrial aspartate aminotransferase (a homodimer) was shown to catalyse a beta-lyase reaction with three nephrotoxic halogenated cysteine S-conjugates [ S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(2-chloro-1,1,2-trifluoroethyl)-L-cysteine], and less effectively so with a non-toxic cysteine S-conjugate [benzothiazolyl-L-cysteine]. Transamination competes with the beta-lyase reaction, but is not favourable. The ratio of beta elimination to transamination in the presence of S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and 2-oxoglutarate is >100.

View Article and Find Full Text PDF