Fourier transformation is an important conceptual as well as computational tool in the arsenal of every practitioner of physical and mathematical sciences. I discuss some of its applications in optical science and engineering to provide a broad perspective on the intimate relation between the physical and mathematical concepts that are elegantly interwoven within the theory of Fourier transforms.
View Article and Find Full Text PDFUnlabelled: Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (
Pedot: PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs.
Specially-treated glass substrates coated with a thin film of water soluble mercaptopropionic acid (MPA) capped CdTe nanocrystals (NCs) were prepared and found to undergo photoluminescence changes by as much as 40% when micro-droplets of organic molecules were placed in the nanometer-range proximity of the NCs. This imaging technique involving close proximity between a nano-crystal and an organic molecule is found to provide a 2 × -3 × enhanced contrast ratio over the conventional method of fluorescence imaging. Photoluminescence of NCs is recoverable upon removal of the organic molecules, therefore validating these NCs as potential all-optical organic molecular nanosensors.
View Article and Find Full Text PDFWe demonstrate that core/graded-shell CdSe/CdSe1-xSx/CdS giant semiconductor nanocrystals (g-NCs) have robust photoluminescence (PL) temperature response. At a size of 10.2 nm in diameter, these g-NCs undergo a PL drop of only 30% at 355 K relative to their PL intensity at 85 K.
View Article and Find Full Text PDFA Reply to the Comments by Vanzella, Barnett, Saldanha, and Khorrami.
View Article and Find Full Text PDF