Publications by authors named "M Mamonkin"

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting lymphocyte antigens can induce T cell fratricide and require additional engineering to mitigate self-damage. We demonstrate that the expression of a chimeric antigen receptor (CAR) targeting CD5, a prominent pan-T cell antigen, induces rapid internalization and complete loss of the CD5 protein on T cells, protecting them from self-targeting. Notably, exposure of healthy and malignant T cells to CD5.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR T) therapy produced excellent activity in patients with relapsed/refractory B-lineage malignancies. However, extending these therapies to T cell cancers requires overcoming unique challenges. In the recent years, multiple approaches have been developed in preclinical models and some were tested in clinical trials in patients with treatment-refractory T-cell malignanices with promising early results.

View Article and Find Full Text PDF

Background Aims: Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain.

Methods: Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium.

View Article and Find Full Text PDF

For patients with high-risk or relapsed/refractory acute myeloid leukemia (AML), allogeneic stem cell transplantation (allo-HSCT) and the graft-versus-leukemia effect mediated by donor T cells, offer the best chance of long-term remission. However, the concurrent transfer of alloreactive T cells can lead to graft-versus-host disease that is associated with transplant-related morbidity and mortality. Furthermore, ∼60% of patients will ultimately relapse after allo-HSCT, thus, underscoring the need for novel therapeutic strategies that are safe and effective.

View Article and Find Full Text PDF