The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.
View Article and Find Full Text PDFThe hippocampus has a crucial role in the formation, consolidation and recall of memories as well as in navigation related processes. These functions are in the focus of neuroscience and different disciplines have contributed to this research field for decades. Two-photon imaging in awake animals is a valuable new aspect for these observations, especially when it is supported by electrophysiology.
View Article and Find Full Text PDFThe few commercially available chemosensors and published probes for in vitro Zn detection in two-photon microscopy are compromised by their flawed spectroscopic properties, causing issues in selectivity or challenging multistep syntheses. Herein, we present the development of an effective small molecular GFP chromophore-based fluorescent chemosensor with a 2,2'-bipyridine chelator moiety (GFZnP BIPY) for Zn detection that has straightforward synthesis and uncompromised properties. Detailed experimental characterizations of the free and the zinc-bound compounds within the physiologically relevant pH range are presented.
View Article and Find Full Text PDFAn effective, GFP-inspired fluorescent Zn sensor is developed for two-photon microscopy and related biological application that features an 8-methoxyquinoline moiety. Excellent photophysical characteristics including a 37-fold fluorescence enhancement with excitation and emission maxima at 440 nm and 505 nm, respectively, as well as a high two-photon cross-section of 73 GM at 880 nm are reported. Based on the experimental data, the relationship between the structure and properties was elucidated and explained backed up by DFT calculations, particularly the observed PeT phenomenon for the turn-on process.
View Article and Find Full Text PDFTransparent epidural devices that facilitate the concurrent use of electrophysiology and neuroimaging are arising tools for neuroscience. Testing the biocompatibility and evoked immune response of novel implantable devices is essential to lay down the fundamentals of their extensive application. Here we present an immunohistochemical evaluation of a Parylene HT/indium-tin oxide (ITO) based electrocorticography (ECoG) device, and provide long-term biocompatibility data at three chronic implantation lengths.
View Article and Find Full Text PDF