Publications by authors named "M Macka"

Distance-based detection (DbD) on paper-based microfluidic analytical devices (μPADs) has emerged as a promising, cost-effective, simple, and instrumentation-free assay method. Broadening the applicability of a new way of immobilization of reagent for DbD on μPADs (DμPADs) is presented, employing an ion exchange (IE) interaction of an anionic metallochromic reagent, 2-(5-bromo-2-pyridylazo)-5-[-propyl--(3-sulfopropyl)amino]phenol (5-Br-PAPS), on the anion-exchange filter paper. The IE DμPADs demonstrate superiority over standard cellulose filter paper in terms of the degree of reagent immobilization, detection sensitivity, and clear detection endpoints due to the strong retention of 5-Br-PAPS.

View Article and Find Full Text PDF

A novel approach for multi-wavelength ultraviolet (UV) absorbance detection has been introduced employing a single board computer (SBC) with a field programmable gate array (FPGA), Red Pitaya SBC, to generate separated micro pulses for three deep-ultraviolet light-emitting diodes (DUV-LEDs), λ = 235, 250, and 280 nm, along with data acquisition and processing via a custom-made program. The pulse set generation and data acquisition were synchronized using the SBC. The outputs of the three pulsing DUV-LEDs were combined and transmitted to the flow cell via a solarisation resistant trifurcated optical fiber (OF).

View Article and Find Full Text PDF

Paper-based analysis has captivated scientists' attention in the field of analytical chemistry and related areas for the last two decades. Arguably no other area of modern chemical analysis is so broad and diverse in its approaches spanning from simple 'low-tech' low-cost paper-based analytical devices (PADs) requiring no or simple instrumentation, to sophisticated PADs and microfluidic paper-based analytical devices (μPADs) featuring elements of modern material science and nanomaterials affording high selectivity and sensitivity. Correspondingly diverse is the applicability, covering resource-limited scenarios on the one hand and most advanced approaches on the other.

View Article and Find Full Text PDF

Liquid chromatography is a prominent analytical technique in separation science and chemical analysis, applied across numerous fields of research and within industrial applications. Over the past few decades, there has been a growing interest in the miniaturization of this technique, which has been particularly enabled through new miniature and portable detection technologies for in-field, at-site, and point-of-need (collectively 'out-of-lab') analyses. Accordingly, significant advances have been made in recent years in the development of miniaturized liquid chromatography with photometric, electrochemical, and mass spectrometric detection, enabling the development of field-deployable and portable instruments for various applications.

View Article and Find Full Text PDF

Organic peroxide explosives (OPEs) are unstable, non-military, contemporary security threats often found in improvised explosive devices. Chemiluminescence (CL) can be used to detect OPEs, via radical formation consisting of peroxide moieties (-O-O-) under acidic conditions. However, selectivity for specific OPEs is hampered by the ubiquitous background of HO.

View Article and Find Full Text PDF