Kidney fibrosis is a hallmark of chronic kidney diseases. Evidence shows that genetic variability and complement component 3 (C3) might influence tubulointerstitial fibrosis. Still, the role of renal C3 production in the epithelial-to-mesenchymal transition (EMT) and genetically determined fibrosis progression remains undiscovered.
View Article and Find Full Text PDFEnvironmental exposures may have endocrine disruptor (ED) effects, e.g., a role for halogenated hydrocarbon chlorobenzenes in increasing vasopressin (AVP), oxytocin (OT) secretion and, in association, anxiety and aggression in male rats has been shown.
View Article and Find Full Text PDFExcessive renal TGF-β production and pro-fibrotic miRNAs are important drivers of kidney fibrosis that lack any efficient treatment. Dysfunctional autophagy might play an important role in the pathogenesis. We aimed to study the yet unknown effects of peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone (Pio) on renal autophagy and miRNA dysregulation during fibrosis.
View Article and Find Full Text PDFPatients with chronic kidney disease and experimental animal models of kidney fibrosis manifest diverse progression rates. Genetic susceptibility may contribute to this diversity, but the causes remain largely unknown. We have previously described kidney fibrosis with a mild or severe phenotype in mice expressing transforming growth factor-beta1 (TGF-β1) under the control of a mouse albumin promoter (Alb/TGF-β1), on a mixed genetic background with CBAxC57Bl6 mice.
View Article and Find Full Text PDF