The group 1 alumanyls, [{SiN}AlM] (M = K, Rb, Cs; SiN = {CHSiMeNDipp}), display a variable kinetic facility (K < Rb < Cs) toward oxidative addition of the acidic C-H bond of terminal alkynes to provide the corresponding alkali metal hydrido(alkynyl)aluminate derivatives. Theoretical analysis of the formation of these compounds through density functional theory (DFT) calculations implies that the experimentally observed changes in reaction rate are a consequence of the variable stability of the [{SiN}AlM] dimers, the integrity of which reflects the ability of M to maintain the polyhapto group 1-arene interactions necessary for dimer propagation. These observations highlight that such "on-dimer" reactivity takes place sequentially and also that the ability of each constituent Al(I) center to effect the activation of the organic substrate is kinetically differentiated.
View Article and Find Full Text PDFSpatial hearing relies on the encoding of perceptual sound location cues in space. It is critical for communicating in background noise, and understanding where sounds are coming from (sound localization). Although there are some monoaural spatial hearing cues (i.
View Article and Find Full Text PDFReactions of a m-terphenylhydridostannylene with β-diketiminato magnesium and calcium hydrides provide bis-μ-hydrido species, the heterobimetallic constitutions of which are maintained after the addition of THF donor solvent. In both cases, reactions with hex-1-ene result in the formation of tetravalent organostannyl alkaline earth derivatives. Whereas the magnesium reagent undergoes facile twofold addition, the calcium-centered process is arrested after a single alkene reduction event.
View Article and Find Full Text PDFThe dimeric calcium and magnesium hydrides, [(BDI)AeH] [BDI=HC{(Me)CNDipp}, Dipp=2,6-i-PrCH; Ae=Mg or Ca] do not react with PhGeH in non-coordinating solvent. Addition of THF, however, induces deprotonation and access to monomeric Ae-germanide complexes, [(BDI)Ae{GePh}(THF)], both of which have been structurally characterized. Although this process is facile when Ae=Ca, the analogous magnesium-based reaction requires heating to temperatures >100 °C, under which conditions germanide formation is complicated by THF ring opening and the generation of an alkaline earth germyl-C-terminated n-butoxide, [(BDI)Mg{μ-O(CH)GePh}].
View Article and Find Full Text PDF