We report the successful implementation of antenna-coupled terahertz field-effect transistors (TeraFETs) as homodyne detectors in a scattering-type scanning near-field optical microscope (s-SNOM) operating with radiation at 246.5 GHz. The devices were fabricated in Si CMOS foundry technology with two different technologies, a 90 nm process, which provides a better device performance, and a less expensive 180 nm one.
View Article and Find Full Text PDFPlasma waves play an important role in many solid-state phenomena and devices. They also become significant in electronic device structures as the operation frequencies of these devices increase. A prominent example is field-effect transistors (FETs), that witness increased attention for application as rectifying detectors and mixers of electromagnetic waves at gigahertz and terahertz frequencies, where they exhibit very good sensitivity even high above the cut-off frequency defined by the carrier transit time.
View Article and Find Full Text PDFSurface plasmon polaritons on (silver) nanowires are promising components for future photonic technologies. Here, we study near-field patterns on silver nanowires with a scattering-type scanning near-field optical microscope that enables the direct mapping of surface waves. We analyze the spatial pattern of the plasmon signatures for different excitation geometries and polarization and observe a plasmon wave pattern that is canted relative to the nanowire axis, which we show is due to a superposition of two different plasmon modes, as supported by electromagnetic simulations including the influence of the substrate.
View Article and Find Full Text PDFLaunching and manipulation of polaritons in van der Waals materials offers novel opportunities for field-enhanced molecular spectroscopy and photodetection, among other applications. Particularly, the highly confined hyperbolic phonon polaritons (HPhPs) in h-BN slabs attract growing interest for their capability of guiding light at the nanoscale. An efficient coupling between free space photons and HPhPs is, however, hampered by their large momentum mismatch.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) of the USF1 gene (upstream stimulatory factor 1) influence plasma lipid levels. This study aims to determine whether USF1 SNPs interact with traditional risk factors of atherosclerosis to increase coronary artery disease (CAD) risk. In the present study serum lipid levels and USF1 gene polymorphisms (rs2516839 and rs3737787) were determined in 470 subjects: 235 patients with premature CAD and 235 controls.
View Article and Find Full Text PDF