We present the self-organizing nervous system (SoNS), a robot swarm architecture based on self-organized hierarchy. The SoNS approach enables robots to autonomously establish, maintain, and reconfigure dynamic multilevel system architectures. For example, a robot swarm consisting of independent robots could transform into a single -robot SoNS and then into several independent smaller SoNSs, where each SoNS uses a temporary and dynamic hierarchy.
View Article and Find Full Text PDFAn off-the-shelf scaffold with requisite properties could enable the viable treatment of irregular craniomaxillofacial bone defects. Notably, the scaffold should be conformally fitting, innately bioactive, and bioresorbable. In prior work, we developed a series of shape memory polymer (SMP) scaffolds based on cross-linked poly(ε-caprolactone) (PCL).
View Article and Find Full Text PDFPLoS One
April 2024
Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3β and AMPK signaling pathways.
View Article and Find Full Text PDFThe physiology of living organisms, such as living plants, is complex and particularly difficult to understand on a macroscopic, organism-holistic level. Among the many options for studying plant physiology, electrical potential and tissue impedance are arguably simple measurement techniques that can be used to gather plant-level information. Despite the many possible uses, our research is exclusively driven by the idea of phytosensing, that is, interpreting living plants' signals to gather information about surrounding environmental conditions.
View Article and Find Full Text PDFBackground: Recently, there is increasing awareness focused on the identification of naturally occurring anticancer agents derived from natural products. Manuka honey (MH) has been recognized for its biological properties as antimicrobial, antioxidant, and anticancer properties. However, its antiproliferative mechanism in hepatocellular carcinoma is not investigated.
View Article and Find Full Text PDF