Publications by authors named "M M Van Katwijk"

Ecosystem restoration can contribute to climate change mitigation, as recovering ecosystems sequester atmospheric CO in biomass and soils. It is, however, unclear how much soil organic carbon (SOC) stocks recover across different restored ecosystems. Here, we show SOC recovery in different contexts globally by consolidating 41 meta-analyses into a second-order meta-analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Many tropical coastal ecosystems are affected by human activities related to tourism and land/sea use.
  • We created a method to engage stakeholders early in ecological research to map the Social-Ecological System (SES) in Lac Bay, Bonaire, especially addressing the new challenge of massive sargassum landings.
  • Our Group Model Building methodology helped us uncover key drivers and feedbacks, prioritize urgent research questions, and develop management strategies for the conservation of seagrass beds and mangrove forests in the area.
View Article and Find Full Text PDF
Article Synopsis
  • Sargassum strandings in the tropical Atlantic create toxic sulfide levels that harm mangrove ecosystems.
  • An experiment tested whether adding iron(III) (hydr)oxides could reduce sulfide toxicity and greenhouse gas emissions in mangroves affected by Sargassum.
  • While iron failed to prevent mangrove death from high sulfide levels, it did reduce methane and nitrous oxide emissions significantly, highlighting the complex ecological impacts of Sargassum on mangroves.
View Article and Find Full Text PDF

Plant species usually have either annual or perennial life cycles, but facultative annual species have annual or perennial populations depending on their environment. In terrestrial angiosperms, facultative annual species are rare, with wild rice being one of the few examples. Our review shows that in marine angiosperms (seagrasses) facultative annual species are more common: six (of 63) seagrass species are facultative annual.

View Article and Find Full Text PDF

Seagrass meadows provide valuable ecosystem services of coastal protection and chemical habitat formation that could help mitigate the impact of sea level rise and ocean acidification. However, the intensification of hydrodynamic forces caused by sea level rise, in addition to habitat degradation threaten the provision of these ecosystem services. With quantitative field measurements of the coastal protection and chemical habitat formation services of seagrass meadows, we statistically model the relationships between hydrodynamic forces, vegetation density and the provision of these ecosystem services.

View Article and Find Full Text PDF