Background: The loss of finger control in individuals with neuromuscular disorders significantly impacts their quality of life. Electroencephalography (EEG)-based brain-computer interfaces that actuate neuroprostheses directly via decoded motor intentions can help restore lost finger mobility. However, the extent to which finger movements exhibit distinct and decodable EEG correlates remains unresolved.
View Article and Find Full Text PDFSteady-state visual evoked potentials (SSVEPs) in response to flickering stimuli are popular in brain-computer interfacing but their implementation in virtual reality (VR) offers new opportunities also for clinical applications. While traditional SSVEP target selection relies on single-frequency stimulation of both eyes simultaneously, further called congruent stimulation, recent studies attempted to improve the information transfer rate by using dual-frequency-coded SSVEP where each eye is presented with a stimulus flickering at a different frequency, further called incongruent stimulation. However, few studies have investigated incongruent multifrequency-coded SSVEP (MultiIncong-SSVEP).
View Article and Find Full Text PDFPatients suffering from heavy paralysis or Locked-in-Syndrome can regain communication using a Brain-Computer Interface (BCI). Visual event-related potential (ERP) based BCI paradigms exploit visuospatial attention (VSA) to targets laid out on a screen. However, performance drops if the user does not direct their eye gaze at the intended target, harming the utility of this class of BCIs for patients suffering from eye motor deficits.
View Article and Find Full Text PDFMcCulloch and Pitts hypothesized in 1943 that the brain is entirely composed of logic gates, akin to current computers' IP cores, which led to several neural analogs of Boolean logic. The current study proposes a spiking image processing unit (SIPU) based on spiking frequency gates and coordinate logic operations, as a dynamical model of synapses and spiking neurons. SIPU can imitate DSP functions like edge recognition, picture magnification, noise reduction, etc.
View Article and Find Full Text PDF