Publications by authors named "M M Tuckerman"

Structural, thermal, and dynamic properties of four deep eutectic solvents comprising choline chloride paired with phenolic derivative hydrogen-bond donors were probed using experiments and molecular simulations. The hydrogen-bond donors include phenol, catechol, -chlorophenol, and o-cresol, in a 3:1 mixture with the hydrogen-bond acceptor choline chloride. Density, viscosity, and pulsed-field gradient NMR diffusivity measurements were conducted over a range of temperatures.

View Article and Find Full Text PDF

Organic molecular crystals constitute a class of materials of critical importance in numerous industries. Despite the ubiquity of these systems, our ability to predict molecular crystal structures starting only from a two-dimensional diagram of the constituent compound(s) remains a significant challenge. Most structure-prediction protocols require a customized interatomic interaction model on which the quality of the results can depend sensitively.

View Article and Find Full Text PDF

Dynamic or structurally induced ionization is a critical aspect of many physical, chemical, and biological processes. Molecular dynamics (MD) based simulation approaches, specifically constant pH MD methods, have been developed to simulate ionization states of molecules or proteins under experimentally or physiologically relevant conditions. While such approaches are now widely utilized to predict ionization sites of macromolecules or to study physical or biological phenomena, they are often computationally expensive and require long simulation times to converge.

View Article and Find Full Text PDF
Article Synopsis
  • Participants from 22 research groups utilized various methods, including periodic DFT-D methods, machine learning models, and empirical force fields to assess crystal structures generated from standardized sets.
  • The findings indicate that DFT-D methods generally aligned well with experimental results, while one machine learning approach showed significant promise; however, the need for more efficient research methods was emphasized due to resource consumption.
View Article and Find Full Text PDF

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern.

View Article and Find Full Text PDF