Pyruvate is situated at the intersection of oxidative phosphorylation (OXPHOS) and glycolysis, which are the primary energy-producing pathways in cells. Cancer therapies targeting these pathways have been previously documented, indicating that inhibiting one pathway may lead to functional compensation by the other, resulting in an insufficient antitumor effect. Thus, effective cancer treatment necessitates concurrent and comprehensive suppression of both.
View Article and Find Full Text PDFRegeneration of periodontal tissue, particularly the cementum-periodontal ligament (PDL)-bone complex, has long been challenging because the differentiation kinetics of cells and the molecular pathways contributing to the regeneration process are largely unknown. We aimed to evaluate the cell behavior and molecular pathways that contribute to periodontal tissue regeneration in vivo. We analyzed the process of periodontal tissue regeneration through subrenal capsule transplantation of immediately extracted molars in mice.
View Article and Find Full Text PDFLower airway club cells (CCs) serve the dual roles of a secretory cell and a stem cell. Here, we probe how the CC fate is regulated. We find that, in response to acute perturbation of Notch signaling, CCs adopt distinct fates.
View Article and Find Full Text PDFThe Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation.
View Article and Find Full Text PDFThe bone marrow (BM) hematopoietic system (HS) gives rise to blood cells originating from hematopoietic stem cells (HSCs), including megakaryocytes (MKs) and red blood cells (erythrocytes; RBCs). Many steps of the cell-fate decision remain to be elucidated, being important for cancer treatment. To explore the role of Wnt/β-catenin for MK and RBC differentiation, we activated β-catenin signaling in platelet-derived growth factor b (Pdgfb)-expressing cells of the HS using a Cre-lox approach (Ctnnb1).
View Article and Find Full Text PDF