Publications by authors named "M M Seckler"

The increasing and alarming panorama of bacterial infections and associated morbidities that occur during medical and hospital procedures makes the development of technologies that aid in controlling such bacterial infections of utmost importance. Recent studies have shown that formulations with metal nanoparticles exhibit good antibacterial properties against a broad spectrum of microorganisms. Moreover, it was demonstrated that some biologically active polymeric materials, when applied in combination with chemical antimicrobial agents, enhance the therapeutic action of the latter.

View Article and Find Full Text PDF

The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV-visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X-ray diffraction pattern confirmed the presence of face-centred cubic structure (FCC plane).

View Article and Find Full Text PDF

The use of bio-based substances (BBS) obtained from composted biowaste as stabilizers for the production of silver nanoparticles (AgNPs) in substitution to citrate is investigated herein, evaluating the functionalization of natural fibers for textile antibacterial applications. The results obtained evidenced that BBS can substitute citrate as reducing/stabilizing agent in the synthesis, inducing a geometrical control (in shape and size) of the AgNPs. Two different substrates were selected (wool and cotton) and two dip-coating deposition techniques investigated.

View Article and Find Full Text PDF

Background: Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial.

Results: This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources.

View Article and Find Full Text PDF
Article Synopsis
  • - Bacterial cellulose (BC) has diverse applications but faces challenges in production efficiency and cost, prompting exploration of alternative raw materials from the food industry to enhance sustainability.
  • - This study aimed to assess BC production by Gluconacetobacter xylinus using waste materials, specifically rotten fruits and milk whey, as culture media.
  • - Results indicated that rotten fruit yielded the highest BC production (60 mg/mL), presenting it as a profitable, eco-friendly option that could lower production costs while addressing waste management issues.
View Article and Find Full Text PDF