Publications by authors named "M M Ponpipom"

3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented.

View Article and Find Full Text PDF

Several analogs of 2,3-diaryl pyrroles were synthesized and evaluated as inhibitors of Eimeria tenella cGMP-dependent protein kinase and in in vivo anticoccidial assays. A 4-fluorophenyl group enhances both in vitro and in vivo activities. The most potent analogs are the 5-(N-methyl, N-ethyl, and N-methylazetidine methyl) piperidyl derivatives 12, 23, and 34.

View Article and Find Full Text PDF

The synthesis of a number of indole GnRH antagonists is described. Oxidation of the pyridine ring nitrogen, combined with alkylation at the two position, led to a compound with an excellent in vitro activity profile as well as oral bioavailability in both rats and dogs.

View Article and Find Full Text PDF

Carboxyalkyl peptides containing a biphenylylethyl group at the P1' position were found to be potent inhibitors of stromelysin-1 (MMP-3) and gelatinase A (MMP-2), in the range of 10-50 nM, but poor inhibitors of collagenase (MMP-1). Combination of a biphenylylethyl moiety at P1', a tert-butyl group at P2', and a methyl group at P3' produced orally bioavailable inhibitors as measured by an in vivo model of MMP-3 degradation of radiolabeled transferrin in the mouse pleural cavity. The X-ray structure of a complex of a P1-biphenyl inhibitor and the catalytic domain of MMP-3 is described.

View Article and Find Full Text PDF

Systematic modification of the C6 acyl side chain of zaragozic acid A, a potent squalene synthase inhibitor, was undertaken to improve its biological activity. Simplification of the C6 side chain to the octanoyl ester has deleterious effects; increasing the linear chain length improves the in vitro activity up to the tetradecanoyl ester. An omega-phenoxy group is a better activity enhancer than an omega-phenyl group.

View Article and Find Full Text PDF