Publications by authors named "M M P Acencio"

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing.

Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms.

View Article and Find Full Text PDF

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g.

View Article and Find Full Text PDF

Prior knowledge about DNA-binding transcription factors (dbTFs), transcription co-regulators (coTFs) and general transcriptional factors (GTFs) is crucial for the study and understanding of the regulation of transcription. This is reflected by the many publications and database resources describing knowledge about TFs. We previously launched the TFCheckpoint database, an integrated resource focused on human, mouse and rat dbTFs, providing users access to a comprehensive overview of these proteins.

View Article and Find Full Text PDF

As a conceptual model of disease mechanisms, a disease map integrates available knowledge and is applied for data interpretation, predictions and hypothesis generation. It is possible to model disease mechanisms on different levels of granularity and adjust the approach to the goals of a particular project. This rich environment together with requirements for high-quality network reconstruction makes it challenging for new curators and groups to be quickly introduced to the development methods.

View Article and Find Full Text PDF

Background: Responses to the systemic treatments commonly used to treat psoriasis vary. Biomarkers that accurately predict effectiveness and safety would enable targeted treatment selection, improved patient outcomes and more cost-effective healthcare.

Objectives: To perform a scoping review to identify and catalogue candidate biomarkers of systemic treatment response in psoriasis for the translational research community.

View Article and Find Full Text PDF