Philos Trans A Math Phys Eng Sci
August 2015
The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N(2)/O(2) mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300-750 Torr) gas pressures and (50-100%) N(2) percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O(2) in N(2)/O(2) mixtures increases.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) at ambient pressures with submicrometer resolution is challenging, due to the very low amount of material available for mass spectrometric analysis. In this work, we present the development and characterization of a method for MSI based on pulsed laser ablation via a scanning near-field optical microscopy (SNOM) aperture tip. SNOM allows laser ablation of material from surfaces with submicrometer spatial resolution, which can be ionized for further chemical analysis with MS.
View Article and Find Full Text PDFOn-line analysis of exhaled human breath is a growing area in analytical science, for applications such as fast and non-invasive medical diagnosis and monitoring. In this work, we present a novel approach based on ambient ionization of compounds in breath and subsequent real-time mass spectrometric analysis. We introduce a plasma ionization source for this purpose, which has no need for additional gases, is very small, and is easily interfaced with virtually any commercial atmospheric pressure ionization mass spectrometer (API-MS) without major modifications.
View Article and Find Full Text PDFRationale: Imaging mass spectrometry with high spatial resolution has become a rapidly developing area of mass spectrometric research. Many scientific and industrial problems deal with mass spectrometric analysis at ambient pressures. This requires efficient transport and ionization of small amounts of substance.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2005
The results are given of an experimental investigation of a cathode-directed streamer discharge in synthetic air in the pressure range from 760 to 300 torr and their comparison with the results of direct numerical simulation in a 2D hydrodynamic approximation. The pattern of discharge branching upon variation of pressure is investigated experimentally. The results are given of comparison of the predicted and measured values of anode current, streamer propagation velocity, and channel diameter.
View Article and Find Full Text PDF