We present the first successful trapping of single erbium atoms in an array of optical tweezers. Using a single narrow-line optical transition, we achieve deep cooling for direct tweezer loading, pairwise ejection, and continuous imaging without additional recoil suppression techniques. Our tweezer wavelength choice enables us to reach the magic trapping condition by tuning the ellipticity of the trapping light.
View Article and Find Full Text PDFSupersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium, ultracold quantum gases provided a first platform to observe supersolids, with particular success coming from dipolar atoms. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence and gapless Goldstone modes, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed.
View Article and Find Full Text PDFBackground: Athletic performance can be measured with a variety of clinical and functional assessment techniques. There is a need to better understand the relationship between the brain's electrical activity and the body's physiological performance capabilities in real-time while performing physical tasks related to sport. Orthopedic functional assessments used to monitor the neuroplastic properties of the central nervous system lack objectivity and/or pertinent functionality specific to sport.
View Article and Find Full Text PDF