Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) play a key role in DNA repair. As major sensors of DNA damage, they are activated to produce poly(ADP-ribose). PARP1/PARP2 inhibitors have emerged as effective drugs for the treatment of cancers with BRCA deficiencies.
View Article and Find Full Text PDFThe formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg, Ca, Mn, spermidine, or spermine can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly).
View Article and Find Full Text PDFMany archetypal and emerging classes of small-molecule therapeutics form covalent protein adducts. In vivo, both the resulting conjugates and their off-target side-conjugates have the potential to elicit antibodies, with implications for allergy and drug sequestration. Although β-lactam antibiotics are a drug class long associated with these immunological phenomena, the molecular underpinnings of off-target drug-protein conjugation and consequent drug-specific immune responses remain incomplete.
View Article and Find Full Text PDFCD8+ T cells contribute to immune responses by producing cytokines when their T-cell receptors (TCRs) recognise peptide antigens on major-histocompability-complex class I. However, excessive cytokine production can be harmful. For example, cytokine release syndrome is a common toxicity observed in treatments that activate T cells, including chimeric antigen receptor (CAR)-T-cell therapy.
View Article and Find Full Text PDF